A variational model allowing both smooth and sharp phase boundaries in solids

نویسندگان

  • John M. Ball
  • Carlos Mora-Corral
چکیده

We present models for solid-solid phase transitions with surface energy that allow both smooth and sharp interfaces. The models involve the minimisation of an energy that consists of three terms: the elastic energy (a double-well potential), the smooth-interface surface energy and the sharpinterface surface energy. Existence of solutions is shown in arbitrary dimensions. The second part of the paper deals with the one-dimensional case. For the first 1D model (in which the sharp-interface energy is the same regardless of the size of the jump of the gradient), we study the regime of the parameters (one parameter represents the boundary conditions, one models the energy of the sharp interface, and the third one models the energy of the smooth interfaces) for which the minimiser presents smooth interfaces, sharp interfaces or no interfaces. We also prove that a suitable scaling of the functional Γ-converges to a pure sharp-interface model, as the parameters penalising the formation of interfaces go to zero. For the second 1D model (in which the sharp-interface energy depends on the size of the jump and can tend to zero as the jump tends to zero), we describe general properties of the minimisers, and show that their gradients have a finite number of discontinuity points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reopening the Convergence Debate when Sharp Breaks and Smooth Shifts Wed, 1870-2010

Abstract This paper attempts to re-investigate the catching-up (stochastic convergence) hypothesis among the selected 16 OECD countries applying the time series approach of convergence hypothesis with annual data over one century. To reach this aim, we propose a model which specifies a trend function, incorporating both types of structural breaks – that is, sharp breaks and smooth shifts usin...

متن کامل

3D Inversion of Magnetic Data through Wavelet based Regularization Method

This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...

متن کامل

Wave Propagation in a Layer of Binary Mixture of Elastic Solids

This paper concentrates on the propagation of waves in a layer of binary mixture of elastic solids subjected to stress free boundaries. Secular equations for the layer corresponding to symmetric and antisymmetric wave modes are derived in completely separate terms. The amplitudes of displacement components and specific loss for both symmetric and antisymmetric modes are obtained. The effect of ...

متن کامل

A sharp stability criterion for soliton-type propagating phase boundaries in Korteweg’s model

Recently, Benzoni–Gavage, Danchin, Descombes, and Jamet have given a sufficient condition for linear and nonlinear stability of solitary wave solutions of Korteweg’s model for phase-transitional isentropic gas dynamics in terms of convexity of a certain “moment of instability” with respect to wave speed, which is equivalent to variational stability with respect to the associated Hamiltonian ene...

متن کامل

Flow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend

Bend existence induces changes in the flow pattern, velocity profiles and water surface. In the present study, based on experimental data, first three-dimensional computational fluid dynamic (CFD) model is simulated by using Fluent two-phase (water + air) as the free surface and the volume of fluid method, to predict the two significant variables (velocity and channel bed pressure) in 90º sharp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008